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Abstract. In this paper the dependence structure inherent in the
sequence of partial sums is utilized to derive accurate approximations
for the tail probabilities of the stopping time associated with sequential
tests for the normal mean. The approximations for these tail probabili-
ties are used to approximate the overall significance level, power
function, expected stopping time, and the variance of the stopping time

“associated with the sequential tests discussed here. Moreover, after the

testing procedure has been completed, the approximations derived in
this paper are used to evaluate P-values and confidence intervals for
the normal mean. Numerical results are presented for the sequential
probability ratio test and the asymptotically optimal Bayes test.

1. INTRQDUCTION

The standard approach in studying the characteristics of sequential tests
for the normal mean is based on asymptotic results for boundary crossing
probabilities of partial sums, employing martingale and renewal theory
methods (see [16], [21], [26], and [29]). Glaz and Johnson [9]-introduced
a new approach for approximating boundary crossing probabilities for partial
sums of independent normal observations. These results were utilized in
approximating various characteristics of sequential tests for the normal mean
incuding: the overall significance level, power function, tail probabilities,
expected stopping time, and the variance of the stopping time associated with
the sequential test. The approximations in [9] are remarkably accurate in the
case when an early termination of the test is likely. For sequential tests that
have a moderate or long termination time, more accurate approximations are
needed. In this paper we address this need. Moreover, after the testing
procedure has been completed we use the improved approximations to
evaluate P-values and confidence intervals for the mean.
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To fix 1deas, let {X,};2, be a sequence of independent and identically
distributed (ii.d.) observations from a normal distribution with unknown
mean @ and known variance 2. In what follows without loss of generality we
will assume that o> = 1. We are interested in testing

Hy,:0<6, vs. H;: 0>0,.

In what follows without loss of generality we will assume that 6, = 0. The
sequential testing procedures considered in this paper are of the following
general form: take observations {X;}72, sequentially. At the n-th stage stop and
reject H, if

(1.1) _ S,=Y X;=2b
i=1
stop and accept H, if

S, <a,,

and continue samplmg by taking another observation if

(12)  S,el,=(a,b,).
Let _
(1.3) , | t=inf{n>1;8§ ¢1}

be the random stopping time associated with the sequential test. For § > 0 the
power functzon of the sequential test is given by

n—1
(14) B= Z Py{x>n—1)n(S,> b))} = 21 Po [ ml (S;€1)} N (S, > by}
n=1 n= j=

The sequence of intervals {I,};>, defines the continuation region for the
sequent1al test and is determined by selectlng a parameter 6, > 0 so that

B(O)—ac and p@,)=1-a,

where « is the desired- overall significance level of the test.
' The most common characteristics of sequential tests that are of 1nterest
mclude the tail probablhtles

(1.5) : P (T > 1) Pﬂ{ﬂ (S; eI)}

thév average sarﬂple size

(1.6) - E,(1) = "il Py(t > n),

and the variance of the sample size needed to carry out the testing procedure

1.7) Var, (c) = 2 i nPy(t > n)+E, (1) [1=E, (1)].

- on=1
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After the completion of the testing procedure it is often of interest to evaluate
the P-value for the sequential test and to construct a confidence interval for 6.

In Section 2 of this paper we derive accurate approximations for the
characteristics of sequential tests, emphasizing the evaluation of P-values and
confidence intervals for 6. Numerical methods used in computing the ap-
proximations are briefly outlined in Section 3. In Section 4 we particularize to
two well-established sequential tests: sequential probability ratio test [25], [29],
and asymptotically optimal Bayes sequential test [2], [28]. Numerical results are
presented for each of these_tests and are evaluated by an extensive simulation
study. A discussion of the numerical results is presented at the end of the paper.

2. APPROXIMATIONS FOR SEQUENTIAL TESTS

2.1. Preliminary results. Let {X;}2; be a sequence of iid. normal
observations with mean 6 and variance ¢? = 1. The approximations derived in
this section have their roots in the approximation for P(r > n). The following
concept of positive dependence plays an important role.

A nonnegative function of two variables, f(x, y), is said to be totally
positive of order two, TP, (cf. [11]), if for all x, <x, and y, <y,

Sy, y)f (2, y2)—f (x4, ¥2)f (%3, y1) 2 0.

A nonnegative real-valued function of n variables, f(x;, ..., Xx,), is said to be
multivariate totally positive of order two, MTP, (cf. [12]), if for any x and y in R"

fevfny) = f()(y),

where
x vy = (max(xy, y;), ..., max(x,, y,)
and xAy=(min(x;, y,), ..., min(x,, y,).

A sequence of random variables X, ..., X, is said to be MTP, if its joint
density function is MTP,.

Remark. Barlow and Proschan [1] define a related concept of positive
dependence: TP, in pairs. If the support for the distribution of X, ..., X, is
a product space, then the TP, in pairs is equivalent to MTP, (see [3]).

It follows from Theorem 2.1 of [9] that the sequence of partial sums
{S;}{=1 defined in equation (1.1) is MTP, for any n > 1. Therefore, for the
problem at hand {|S}!-, is MTP, for any n > 1 ([13], Theorem 3.1) and the
product-type inequalities that have been introduced in Theorem 2.3 of [8] can be
utilized in approximating P(t > n) and other characteristics of sequential tests.

2.2. Approximations for P (v > n), E(1), Var(r) and B(6). For 1l <m <nit
follows from Theorem 2.3 of [8] and equation (1.5) that

2.1 P(z > 1) 2 Ymn
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where
(22) Pman = H1,m H M

k=m+1Mk—m+1,k—1
and

: 1, i>j,
2.3 ;= ] :
@3) "= Y P{NSel)}, 1<i<j<n
t=i

In what follows we abbreviate y,, , to y,,. In [9], y,, was evaluated for 1 <m < 3

only. It was noted in [9] that, for sequential tests possessing moderate to long
termination times, a more accurate approximation for P(z > n) is needed. Since

" {Vm}m=1 is an increasing sequence, a more accurate approximation can be

obtained for higher values of m. In Section 3 we present a new approach that
will enable us to evaluate y,, for 1 <m < 7. In Section 4 we compare our best
approximation y, with the approximations derived in [9].

To evaluate approximations for E (z) and Var () we employ equat1ons (1.6)
and (1.7), respectively, and approximate the terms P (r > n) in these equations
by y,. In Section 4 we compare these approximations with the approximations
that are based on approximating P(t > n) by 7,.

It follows from equation (1.4) that

24 B©O) = 3 B.(6,b,),
where _"1_1
(2.5) B,@, x)=P{[ [ S;,eI)] n(S,>x)}.
i=1
To approximate the power function we approximate the terms f,(0, x) by
(26) 'y#,n =%Y7n-1 '7::— 6,n/’7n—6,n—1 s
where y;,-; and 7,_¢,-; are defined in (2.2) and (2.3), respectively, and for
- i<n—1 i

2.7) .= P{[ ) S;eI)] 0 (S, > by}

. j=i -

In Section 3 we outline the method for evaluating #7_ 6,» and y; .. In Section 4
we compare this new approximation with the approximations that have been
studied in [9].

2.3. P-values for sequential tests. In what follows we adopt the definition of
P-values from [17], where a detailed discussion about the rational behind that
definition is presented. For sequential tests considered in this paper it follows
from equations (2)(5) of [17] that if the test terminates at stage k with a reject

" H, decision and an observed value of S, = sz = b,, then

k-1

(2.8) P-value = Y’ B,(0, b,)+ B, (0, sp),
n=1
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where f, (0, x) is defined in (2.5). If the test terminates at stage k with an accept
H, decision and an observed value of S, =s, < g, then

k-1
(2.9) P-value =1—[ ) ,(0, a)+a,.(0, sA)],

n=1

where for n> 1
(210) o, (0, x)= P{["{:]1 (S;el)]n (S, <x)} = P@r>n—-1)—p,(0, x).

Remarks. 1. It is routine to verify that if the P-values are defined as
above, then when H, is true the distribution of the P-values is uniform over the
interval [0, 1].

2. The overall significance level of the test is given by

@.11) %= i B.(0, b,).

The evaluation of the P-value and the overall significance level of the tests
are based on the algorithms for approximating P(z > n) and B, (6, x) that are
given in Section 3. In Section 4 we evaluate our most accurate approximations
for the P-values and the overall significance levels based on y, and y%, given in
(2.2) and (2.6), respectively.

2.4. Confidence intervals for the normal mean following a sequential test.
After a sequential testing procedure has been completed it is often of interest to
present a confidence interval for the population mean 6. The problem of
constructing confidence intervals following a sequential test has been studied
mainly for group sequential tests with at most five stages (see [5]1, [14], [18&],
and [24]). In this case iterative numerical algorithms have been used to
construct the desired confidence intervals. For a general sequential test,
asymptotic results have been utilized to construct confidence intervals fol-
lowing the testing procedure (see [20], [21], [23], [26], [29], [30]). For the
special case of the exponential distribution Bryant and Schmee [4] and
Madsen and Fairbanks [17] discuss numerical algorithms for constructing con-
fidence intervals for the mean following a sequential probability ratio test [25].
Their confidence intervals use the well-known relation between confidence sets
and test of hypothesis as outlined in Section 9.2 of [29]. The reason for
adapting this approach rather than utilizing the maximum likelihood estimator
of 8, which for the problem at hand is based on S,, is the presence of a sizable
bias ([29], Chapter 9).

For the sequential tests considered in this paper (see equations (1.1}+3.1))
we employ the approach in [17] and utilize the approximations derived in our
paper to construct approximate confidence intervals for § and the median
unbiased estimator of 0. Assume that the sequential test terminates at stage k




316 J. Glaz and J. R. Kenyon

with a reject H, decision and an observed value of S, = sz > b,. Then
a (1—22)100% confidence interval for 6, denoted by (g, Ogy), is obtained
from the equations

k-1
(2.12) -21 B;i(re; b))+ By (Ory, 5p) =
=
and
k—1
(2.13)

B;(Oru, bj)+ B (Ory, sp) = 1—0,
j=1
where B;(8, x) is given in (2.5) and 0 < « < 0.5 is a specified quantity. Now,
suppose that the test terminates at stage k with accept H, decision and an
observed value of S, = s, < g,. In this case, a (1—2x) 100% confidence interval
for 0, denoted by (041, Oay), Tesults from the solution of the equations

k—1

2.14) 2 #(0aLs @)+ 2 (Bar, s4) = 1—0
j=1
and 7
k-1
(2-15) Z aj(gAu, aj)+ak(9Au, SA) = a,
j=1

where a;(0, x) is given in (2.10). The numerical algorithms used in evaluating

_the confidence intervals (fgy, Ogry) and (041, @,u) are described in Section 3.

Along with the confidence intervals for 8 it is often useful to present the
approximate median unbiased estimate of 6. This estimate is obtained by
solving equations (2.12) and (2.14) for a =0.5. The approximate median
unbiased estimators obtained from (2.12) and (2.14) are denoted by fgy and
Oam, respectively. '

In Section 4 we evaluate the approximate, median unbiased estimates and
confidence intervals for 0 for selected values of a, k,s; and s,. These
approximations are based on the accurate approximations for P(r > n)
(equations (2.1)+2.3)) developed in this paper. ’

3. NUMERICAL ALGORITHMS
FOR EVALUATING THE APPROXIMATIONS

In this section we present a brief outline for the numerical procedures used
to evaluate the approximations discussed in Section 2. To evaluate 7,,,, the
lower bound for P(t > n), for 1 < m < 7 we have to evaluate the multivariate
normal probabilities

J
my=P{Sel)} fori=j=6,....j-1,
t=i o
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where I, = (a,, b,) (equations (2.1)+2.3)). For j>i+1 we condition on Sf,
where t* is the integer part of (i+j—1)/2, and integrate over its density. By
- utilizing the conditional independence of the events a simplified expression for
n;; that is suitable for numerical integration is obtained. For example, to
evaluate y,, the most elaborate term in equation (2.2) is

. 6
-6 =P{ () (S;—xelj-)}.
k=0

Using the approach desaribed above we get: '

31  n-6;
1
_‘. fsj_s(s)n P(Sj-6+m€lj 61| Sj-s=1t, Sj—3= S)fs,_5|s,_3=s(1{)dt
X I n P(SJ 2+2kEIJ 2+ 2k I S 1= U, j—3 = S)ij—1|SJ—3=S(u)duds'
Ij-1k=0 .

To evaluate the multiple mtegrals in equation (3.1) we have selected the
Gaussian quadrature method. This method performs as well as other numerical
integration methods and has the advantage of being based on a fixed number
of points [22].

For the problem at hand we employ the Gauss—Legendre quadrature (6],

pp. 887 and 916-919):
a 1 N

(3.2) Jf)dx =a [ fas)ds ~ Y B;[f(as)+f(—as)],
—a -1 i=1 .

where a > 0, f(x) is an integrable function, {B;}\-, is a sequence of weights for
the Gauss-Legendre quadrature, and {s;}\, is a sequence of abscissas (zeros of
the N-th degree Legendre polynomial) for Gauss—Legendre quadrature ([6],
pp. 916-919). The approximation on the right-hand side of equation (3.2) is
based on 2N points. We now present the general form of the approximation for
1j-6.; given in equation (3.1) that is based on the Gauss-Legendre quadrature.
In what follows we assume without loss of generality that I, = (— c,, ,), where
>0 and t=1,...,n It follows from (3. 1) that

M
(3.3) Hj-6,j ~ n Cr—t l_[ B; {a,-(s,-) z 1)(S.a 32 tj) Z Bhgglz) (Sia uh, _uh)
=1 i=1 i=1 h=1

M
+a;(—s;) Z ng§1’(—si, L, _tj) Z Bhgslm(_si, Uy _“h)},
j=1 h=1

where ai(si)’ g,(il)(si:v tj’ _tj)’ g_(il)("_sia tja _tj)a gEZ)(si’ Ups _uh) and gs:”("si,
u,, —u,) are algebraic expressions involving the cumulative distributions and
the density functions as functions of +s;, +¢; and +u;, the abscissas used in
the Gauss-Legendre quadrature. Explicit formulae for #;_ ;, k=1, ..., 6, are
given in [10].
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To evaluate the lower bound for E(r) and the approximation for Var(z)
we substitute y,, for P(r >n) in (1.6) and (1.7), respectively. Since the
expressions for E(t) and Var(z) contain infinite series of tail probabilities, we
truncate these series at the pomt where their values do not change by more
than 1076,

To approximate the power function, the P-values, the overall significance
level, the median unbiased estimate of 6, and the confidence interval for 6 we
effectively approximate the terms §, (6, x) given in (2.5) by y* , defined in (2.6).
For 1 < m <7 the evaluation of y5, , involves the terms yp, -4 and Yn—jn—1 that
were discussed above and the terms

Mm—jn=P {[ﬂ (SeI)]n(S >b,)}, 1<j<6.
j=n—j

Since the evaluation of u¥_;, differs from #,_;, only by the form of the last
event, a similar numerical algorithm using the Gauss-Legendre quadrature is

used. Explicit formulae for nf_;,, 1 <j <6, are given in [10].
The power function f(0) and the overall significance level a, given in (2.4)
“and (2.11), respectively, are represented as infinite series of §,(9, b,). We truncate
these series at the point where their values do not change by more than 1076,

4. EXAMPLES

In this section we apply the approximations derived in Sections 2 and 3 to
two well-established sequential tests.

EXAMPLE 1 (sequential probability ratio test). The continuation region for
this test is given by the intervals

I,=(—a/0,+n0,/2, a/0,+nb,/2),

 where a and 6, are the design parameters. For more details on the sequential
probability ratio test see [29], Chapter 3. To apply the approximations
discussed in Sections 2 and 3 it is convenient to transform the continuation
region so that it will be symmetric about the » axis in the (n, S,)-plane. This is
- accomplished by the transformation ¥; = X;—6/2 and defining

t=inf{n > 1; SF¢I}},

where S} = Z:'_l Y, and I} =(—a/0,, a/0,). The null hypothesis is trans-
lated to H,: 0 < —6* and the error rates requirements in this case are
B(—0%) = 1 B(6%) = o, where 6* = 0,/2. To satisfy the above error require-
ments one uses the value a = In(y/a) —0.583, where y is the Laplace transform
of the asymptotic distribution of the excess of the random walk 6,S} over
the boundary evaluated at the value one (see [29], Section 3.1, and [21],

Chapter X).
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We now give the numerical results for this example. In Table I we present
the approximations for the tail probabilities of the stopping time, in Table II
the expected stopping time and the standard deviation of the stopping time, in
Table I11 the power function of the test, in Table IV the P-values, and in Table V
the approximate confidence intervals and the median unbiased estimators of 6.

TasLE I. Lower bounds and simulated values of P(z > n) for a = =005 and 0* = 0.50

n Vs © 9, 7" Simulation | n Y3 Y2 Simulation
1 0.9706* 0.9706* 0.9667 11 0.0767 0.0826 0.0856
2 0.8273# 0.8273% 0.8276 12 0.0581 0.0636 0.0649
3 0.6592* 0.6592* 0.6633 13 0.0440 0.0489 0.0505
4 0.5130 0.5133* 0.5112 14 0.0332 0.0376 0.0390
5 0.3951 0.3967* 0.4000 15 0.0251 0.0290 0.0305
6 0.3026 0.3057* 0.3153 16 0.0190 0.0223 0.0239
7 0.2309 0.2354* 0.2386 17 0.0143 0.0172 0.0185
8 0.1757 0.1812 0.1865 18 0.0108 0.0132 0.0145
9 0.1335 0.1395 0.1405 19 0.0082 0.0102 0.0083
10 0.1013 0.1073 0.1098 20 0.0062 0.0078 0.0064

The starred values are exact.

TaBLE II
0 0* =0.25 o* =0.50
—-0.25 —0.125 0 —0.50 -0.25 0
Lower bounds and simulated values.of E(7)
0.010 31.39 46.22 59.46 9.05 14.13 19.04
: 34.55 53.87 72.04 9.28 1521 21.16
36.16 6131 84.90 9.23 15.25 21.54
0.050 19.51 25.77 29.53 562 . 770 8.99
21.38 29.34 3425 5.69 7.87 9.24
"22.32 30.58 36.20 5.72 7.99 9.25
Approximated and simulated values of standard deviation of
0.010 16.13 26.93 37.31 5.31 9.47 13.86
19.82 3551 51.17 5.68 11.10 16.78
23.02 46.09 68.66 5.70 11.35 17.69
0.050 11.95 17.13 20.35 377 5.70 6.94
14.53 21.77 26.35 392 6.02 7.37
15.86 24.08 29.61 3.97 6.20 743

Upper and middle values are the lower bounds based on y, and y,, respectively. Lower value
is simulated.
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TasLE III.. Approximated and simulated values of B(6)

\0 6* =025 6* = 0.50
x —0.25 —0:125 0 —0.50 —025 0
0.010 0.0099 0.0906 0.5000 0.0099 0.0905 0.5000
00099  0.0908 0.5000 0.0099 0.0908 0.5000
0.0097 0.0886 0.5000% 0.0103 0.0891 0.5000*
0.050 0.0474 0.1823 05000 0.0475 0.1823 0.5000
' 00476 0.1827 0.5000 0.0476 0.1826 0.5000
- 0.0445 0.1798 0.5000% 0.0488 0.1842 0.5000*

Upper and middle values are the lower bounds based on y, and y., respectively. Lower value

is simulated; starred values are exact.

TABLE IV. P-values for o = =005 and 6* =0.25

N Upper boundary Lower boundary
Number of standard deviations of St over the boundary
0.1 0.5 0.1 0.5
1 0.0000 0.0000 1.0000 1.0000
2 0.0000 0.0000 0.9998 0.9999
3 0.0002 0.0001 0.9969 0.9984
4 0.0007 0.0004 0.9869 0.9914
5 0.0016 0.0012 0.9844 0.9849
6 0.0030 0.0024 0.9402 0.9512
7 0.0047 0.0039 0.9065 0.9196
8 0.0066 0.0057 0.8687 0.8831
S 0.0086 0.0077 0.8286 0.8438
10 0.0106 0.0097 0.7876 0.8030
11 0.0127 0.0118 0.7468 0.7621
12 0.0147 0.0138 0.7067 0.7216
13 0.0166 0.0158 0.6677 0.6822
14 0.0185 0.0177 0.6302 - 0.6441
15 0.0203 0.0195 0.5943 0.6076
16 0.0220 0.0213 0.5600 0.5727
17 0.0236 0.0229 0.5275 0.5395
18 0.0252 0.0245 04967 0.5081
19 0.0266 0.0260 0.4677 0.4784
20 0.0280 0.0274 0.4402 0.4503
21 0.0293 0.0287 04144 0.4239
22 0.0305 0.0300 0.3901 0.3991
23 0.0316 0.0311 0.3674 0.3758
24 0.0327 0.0322 0.3460 0.3539
25 0.0337 0.0333 0.3259 0.3333
26 0.0346 0.0342 0.3072 0.3141
27 0.0355 0.0351 0.2896 0.2961
28 0.0363 0.0360 0.2732 0.2792
29 0.0371 0.0368 0.2578 0.2634
30 0.0378 0.0375 0.2434 0.2487




Characteristics of sequential tests 321

TABLE V. 95% confidence: intervals (CI) for 8; o = f = 0.05 and 8* = 0.25

Number of standard deviations St is over the upper boundary
N _ 0.1 0.5 . -
Lower CI Median Upper CI | 'Lower CI - Median -~ - Upper CI

1 3.5498 5.5097 74697 3.9498: - . 5.9097 - 7.8697
2 1.3689 2.7549 4.1408 1.5689 29548 ... 43407
3 0.7011 1.8342 2.9665 0.8287 1.9644 3.0077
4 0.5848 1.4689 1.7669 0.5848 1.4689 1.7669
5 02701. . 12562 -1.6811 0.3574 1.3169 1.6990
6 ---0.1129 1.0271 1.6272 0.1619 1.0893 . - 1.6373
7 0.0989 1.0078 1.6144 " 0.0989 1.0078 1.6144
8 —0.0394 0.7218 1.5784 0.0106 - 0.8063 1.5860

9 —0.0824 0.6321 1.5747 —0.0227 0.7411 1.5833
10 —0.1155 0.5624 1.5735 —0.0504 0.6892 1.5825
11 —0.1416 0.5064 15732 —0.0733 0.6468 1.5822
12 —0.1625 0.4604 1.5731 —0.0925 0.6113 1.5822
13 —0.1796 04218 1.5730 —0.1086 0.5812 1.5822
14 —0.1936 0.3889 1.5730 —0.1224 0.5553 1.5821
15 —0.2053 0.3607 1.5730 . —0.1341 0.5328 1.5821

EXAMPLE 2 (asymptotically optimal Bayes sequential test). The continuation
region for this test is bounded and symmetric:

I, = (—c,+nb*, c,—nf*),

where ¢, = (2am)’?, a >0, and 6* > 0. Moreover, P(t < M)=1, where
M = 2a/6*? if this quantity is an integer or the integer part of it plus one,

Tasre VI. Lower bounds and simulated values of P(t > n) for « = § = 0.05 and 6* = 0.50

n 73 Ty, Simulation| - » . . gy 74 Simulation
1 0.9148* - 0.9148* 09184 1 0.0978 0.1074 0.1067
2 0.8034* 0.8034* 0.8065 12 0.0709 0.0792 0.0771
3 0.6875* 0.6875* 0.6921 13 0.0503 0.0572 " 0.0551
4 0.5750 0.5765* 0.5778 14 " '0.0349 0.0402 0.0377
5 0.4709 0.4749* 0.4738 15 0.0235  0.0275 0.0266
6 0.3703 0.3850* 0.3871 16 0.0153 0.0181 0.0183
7 0.2985 0.3075* 0.3108 17 0.0095 0.0113 0.0109
8 02316 - 0.2419 0.2440 18 © 00055 - 0.0066 0.0069
9 0.1767 0.1875 - 0.1884 19 0.0029 0.0035 - 0.0034

10 0.1326 0.1431 0.1439 20 0.0013 0.0016 0.0014

The starred values are exact.

21 — PAMS 15
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otherwise. The constants a and 6* are the design parameters for testing

Hy: 0 < —0* vs. H: 0> —0%,

and are selected in such a way that the error rates requirements in this case
are f(—0%)=1—-F(0% = o. A thorough discussion about this test can be
found in [2], [19], and [28]. Numerical resulis for this example are presented
in Tables VI-X.

TaBLE VII
\0 0* =0.25 0* =0.50
: —0.25 —0.125 0 —0.50 —0.25 0
Lower bounds and simulated values of E(7)
0.010 33.86 51.48 65.65 9.61 14.48 17.95
37.75 58.29 73.77 9.93 15.11 18.66
40,02 62.54 79.90 9.839 15.10 18.78
onse 29.13 33.91 598 8.02 9.10
23.57 32.87 38.17 6.08 8.16 9.26
24.30 34.62 40.36 6.09 8.12 9.33
Approximated and simulated values of standard deviation of
0.010 19.02 28.31 33.62 5.40 7.73 8.63
22.09 3245 37.08 574 - 813 8.91
24.62 35.68 39.32 5.74 8.15 9.00
0.050 14.39 19.53 22.03 3.87 495 537
16.66 2221 24.58 398 5.07 547
17.56 23.63 25.79 3.96 5.01 5.50

Upper and middle values are the lower bounds based on y; and y,, respectively. Lower value

is simulated.

TasLE VIII. Approximated and simulated values of 8(6)

20 6* = 025 o* = 0.50
- ~0.25 —0.125 0 —0.50 —025 - 0

0.010 0.0083 0.0791 0.5000 0.0086 0.0954 0.5000
0.0086 0.0871 0.5000 0.0090 0.1003 0.5000
0.0086 0.0908 0.5000* 0.0079 0.1031 0.5000*

0.050 00413 - 0.1645 . 0.5000 0.0432 0.1805 0.5000
0.0423 0.1706 0.5000 0.0439 0.1823 0.5000
0.0471 0.1760 0.5000* 0.0445 0.1822 0.5000*

Upper and middie values are the lower bounds based on y, and 7., respectively. Lower value
is simulated; starred values are exact.
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TaBLE IX. P-values for a = =0.05 and 0* =0.25

N Upper boundary Lower boundary
Number of standard deviations of St over the boundary

0.1 0.5 0.1 0.5
1 0.0031 0.0009 0.9873 0.9958
2 0.0068 0.0051 0.9670 09764
3 0.0095 0.0083 0.9451 0.9547
4 | . 00117 --- 0.0107 0.9223 0.9321
-5 0.0136 0.0127 0.9173 09182
6 0.0152 0.0145 0.8748 0.8847
7 0.0166 0.0160 0.8504 0.8603
8 0.0179 0.0173 0.8256 0.8356
9 0.0190 0.0185 0.8005 0.8105
10 0.0201 0.0196 0.7752 0.7852
11 0.0211 0.0206 0.7497 0.7597
12 0.0220 0.0216 0.7242 0.7342
13 0.0228 0.0224 0.6987 0.7086
14 0.0236 0.0233 0.6733 0.6831
15 0.0244 0.0241 0.6481 0.6578
16 0.0251 0.0248 0.6231 0.6327
17 0.0258 0.0255 0.5985 0.6079
18 0.0264 0.0262 0.5742 0.5834
19 0.0271 0.0268 0.5503 0.5594
20 0.0276 0.0274 0.2570 0.5358
21 0.0282 0.0280 0.5041 0.5127
22 0.0288 0.0285 0.4819 0.4902
23 0.0293 0.0290 0.4602 0.4683
24 0.0298 0.0296 0.4391 04470
25 0.0302 0.0300 0.4187 0.4263
26 0.0307 0.0305 0.3989 0.4063
27 0.0312 0.0310 0.3799 0.3869
28 0.0316 0.0314 0.3615 0.3683

- 29 0.0320 0.0318 0.3437 0.3503 -

30 0.0324 0.0322 0.3267 0.3330

From the numerical results for the two sequential tests given in
Tables I-III and Tables VI-VIII, respectively, it is evident that the new
approximations derived in this paper improve significantly on the ap-
proximations given in [9]. These improved approximations lead to accurate
P-values and confidence intervals for the mean presented in Tables TV-V
and IX-X. Note that the confidence intervals and the median unbiased
estimators for the mean presented in Tables V and X were given only
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Tapre X. 95% confidence intervals (CI) for 0; o = =0.05 and 6* = 0.25

Niimber of standard deviations St is over the upper boundary
N 0.1 05 .
Lower CI Median-  Upper CI Lower CI Median Upper CI

1 0.5261 2.4861 4.4461 0.9261 2.8861 4.8461
2 0.1557. 1.6138 . 3.0209 0.2699 1.7803 3.2025
3 0.0137 1.2363 2.3956 0.0657 1.3305 2.5056
4 —0.2670- - 0.6501 0.9591 —0.2670 0.6501 0.9591
5 —0.2793 . 0.5975 0.9019 —0.2724 0.6187 0.9224
-6 —0.2911 - 0.5463 - 0.8475 —0.2859 0.5644 0.8650
7 —0.3032 0.5260 0.8207 —0.3032 0.5260 0.8207
8 —0.3129 0.4660 0.7551 —0.3075 0.4907 0.7802
9 —0.3145 0.4496 0.7390 - —0.3082 0.4812 0.7713
10 —0.3152 . 0.4373 0.7288 —0.3085 0.4742 0.7663
11 —0.3157- 04273 . 07229 ~0.3087 0.4685 0.7641
12 —0.3159 0.4189 0.7200 | —0.3089 0.4638 0.7636
13 —0.3161 . 0.4114 0.7193 —0.3089 0.4598 0.7644
14 —03163 .. 04046 0.7202 —0.3090 0.4562 0.7660
15 —03164 . 03982 07223 | —0.3091 0.4530 0.7682

in the case when the process crosses the upper boundary. In the case
when the lower boundary is crossed, for the examples presented in this
paper, one multiples by the minus sign the values given in Tables V and X.
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