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Abstract. In this paper the dependence structure inherent in the 
sequence of partial sums is utilized to derive accurate approximations 
for the taiI probabilities of the stopping time associated with sequential 
tests for the normal mean. The approximations for these tail probabili- 
ties are used to approximate the overall signiiicance level, power 
function, expected stopping time, and the variance ofthe stopping time 
associated with the sequential tests discussed here. Moreover, after the 
testing procedure has been completed, the approximations derived in 
this paper are used to evaluate P-values and confidence intervals for 
the normal mean. Numerical results are presented for the sequential 
probability ratio test and the asymptotically optimal Bayes test. 

The standard approach in studying the characteristics of sequential tests 
for the normal mean is based on asymptotic results for boundary crossing 
probabilities of partial sums, employing martingale and renewal theory 
methods (see [16j, [21], [26], and 1291). Glaz and Johnson [9] introduced 
a new approach for approximating boundary crossing probabilities for partial 
sums of independent normal observations. These results were utilized in 
approximating various characteristics of sequential tests for the normal mean 
incuding: the overall si@cance level, power function, tail probabilities, 
expected stopping time, and the variance of the stopping time associated with 
the sequential test. The approximations in [9] are remarkably accurate in the 
case when an early termination of the test is likely. For sequential tests that 
have a moderate or long termination time, more accurate approximations are 
needed. In this paper we address this need. Moreover, after the testing 
procedure has been completed we use the improved approximations to 
evaluate P-values and confidence intervals for the mean. 
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To fix ideas, let (Xi);"=l be a sequence of independent and identically 
distributed (i.i.d.1 observations from a normal distribution with unknown 
mean 0 and known variance a'. In what follows without loss of generality we 
will assume that o2 = 1. We are interested in testing 

H,: 6 < 8, vs. HI: 6 > 6,. 

In what follows without loss of generality we will assume that 0, = 0. The 
sequential testing procedures considered in this paper are of the following 
general form: take observations {Xi)i", sequentially. At the n-th stage stop and 
reject H ,  if 

R 

( 1 . 1 )  S ,  = C Xi 2 b,, 
i=  1 

stop and accept H ,  if 
S" < a,, 

and continue sampling by taking another obse~ation if 

(1.2) Sn E I ,  = (a,, bn). 

Let 

be the random stopping time associated with the sequential test. For 8 > 0 the 
power function of the sequential test is given by 

The sequence of intervals (I,),"=, defines the continuation region for the 
sequential test and is determined by selecting a parameter 8, > 0 so that 

j (O )=or  and #?(O,)=l-a,  

where ct is the desired overall sign$cance level of the test. 
The most common characteristics of sequential tests that are of interest 

include: the tail probabilities 
n 

(1.5) P,(z > n) = Po ( n ( s j ~ J j ) } ,  
j= 1 

the average sample size 
m 

(1.6) E,(z) = C P,(T > n), 
n =  1 

and the variance of the sample size needed to carry out the testing procedure 
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After the completion of the testing procedure it is often of interest to evaluate 
the P-value for the sequential test and to construct a confidence interval for 8. 

En Section 2 of this paper we derive accurate approximations for the 
characteristics of sequential tests, emphasizing the evaluation of P-values and 
contidence intervals for 8. Numerical methods used in computing the ap- 
proximations are briefly outlined in Section 3. In Section 4 we particularize to 
two well-established sequential tests: sequential probability ratio test [25], [29], 
and asymptotically optimal Bayes sequential test [2], [28]. Numerical results are 
presented for each of these. tests and are evaluated by an extensive simulation 
study. A discussion of the numerical results is presented at the end of the paper. 

2. APPROXIMATIONS FOR SEQUENTIAL TESTS 

2.1. Preliminary results. Let {Xi):, be a sequence of i.i.d. normal 
observations with mean 0 and variance c2 = 1, The approximations derived in 
tbis section have their roots in the approximation for P(z > n). The following 
concept of positive dependence plays an important role. 

A nonnegative function of two variables, f(x, y), is said to be totally 
positive 4 order two, TP, (cf. [Ill), if for all x ,  < x, and y ,  < y, 

A nonnegative real-valued function of n variables, f(x,, . . . , xJ, is said to be 
multivariute totally positive of order two, MTP, (cf. [12]), if for any x and y in Rn 

f (x  v ~ ) f ( x A  Y) 2S(x)f(y), 
where 

and x ~ y = ( m i n ( x , , y , )  ,..., min(x,,y,)). 

A sequence of random variables X,, .. ., X, is said to be MTP, if its joint 
density function is MTP,. 

Remark. Barlow and Proschan [I] define a related concept of positive 
dependence: TP, in pairs. If the support for the distribution of X,, . . . , Xn is 
a product space, then the TP, in pairs is equivalent to MTP, (see [3]). 

It follows from Theorem 2.1 of [9] that the sequence of partial sums 
{S,):, , defined in equation (1.1) is MTP, for any n 3 1. Therefore, for the 
problem at hand {IS,I);,, is MTP, for any n 2 1 ([13], Theorem 3.1) and the 
product-type inequalities that have been introduced in Theorem 2.3 of [8j can be 
utilized in approximating P(z > a) and other characteristics of sequential tests. 

2.2. Approximations for P (z > n), E (z), Var (7) and b(0). For 1 < m < n it 
follows from Theorem 2.3 of [8] and equation (1.5) that 

(2.1) P(z > 2 Ym,,, 
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where 

and 

(2.3) 

In what follows we abbreviate y,,, to y,. In [9], y, was evaluated for 1 < m d 3 
only. It was noted in [93 that, for sequential tests possessing moderate to long 
termination times, a more accurate approximation for P (t > n) is needed. Since 
(ym):= is an increasing sequence, a more accurate approximation can be 
obtained for higher values of m. In Section 3 we present a new approach that 
will enable us to evaluate y, for 1 < m < 7. In Section 4 we compare our best 
approximation y, with the approximations derived in [9]. 

To evaluate approximations for E (T) and Var (T) we employ equations (1.6) 
and (1.7), respectively, and approximate the terms P(z  > n) in these equations 
by y ,. In Section 4 we compare these approximations with the approximations 
that are based on approximating P(T > n) by y,. 

It follows from equation (1.4) that 
41 

(2.4) B(f4 = C Bn (0, b,), 
n = l  

where 
n- 1 

(2.5) 8, (0, x) = P {[ n ( s j~r j> ]  n ( S n  > XI). 
j= 1 

To approximate the power function we approximate the terms &(O,  x) by 

where y7,, ,- ,  and q n - 6 , n - 1  are defined in (2.2) and (2.31, respectively, and for 

In Section 3 we outline the method for evaluating u , * _ ~ , ~  and y,,,. In Section 4 
we compare this new approximation with the approximations that have been 
studied in [ 9 ] .  

2.3. P-values for sequential tests: In what follows we adopt the definition of * 

P-values from [ I n ,  where a detailed discussion about the rational behind that 
definition is presented. For sequential tests considered in this paper it follows 
from equations (2)-(5) of [17] that if the test terminates at stage k with a reject 
H, decision and an observed value of S, = s, 2 b,, then 

k -  1 

12-81 P-value = C 8, (0, b,) + B k  (0, s,), 
n = l  
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where /3, (8 ,  x) is defined in (2.5).'If the test terminates at stage k with an accept 
H ,  decision and an observed value of S, = s, d a,, then 

P-value = 1 - [ C a, (0, a,) +a, (0, s,)] , 
n =  1 

where for n 2 1 

~ e m a r k s .  1. It is routine to verify that if the P-values are defined as 
above, then when H ,  is true the distribution of the P-values is uniform over the 
interval [0, 11. 

2. The overall significance level of the test is given by 

The evaluation of the P-value and the overall significance level of the tests 
are based on the algorithms for approximating P ( t  > n) and /3,, (8, x) that are 
given in Sectioli 3. In Section 4 we evaluate our most accurate approximations 
for the P-values and the overall significance levels based on y, and y q ,  given in 
(2.2) and (2.61, respectively. 

2.4. Confidence intervals for the normal mean following a sequential test. 
After a sequential testing procedure has been completed it is often of interest to 
present a confidence interval for the population mean 0. The problem of 
constiucting confidence intervals following a sequential test has been studied 
mainly for group sequential tests with at most five stages (see [5], [14], [18], 
and f241). In this case iterative numerical algorithms have been used to 
construct the desired confidence intervals. For a general sequential test, 
asymptotic results have been utilized to construct confidence intervals fol- 
lowing the testing procedure (see [20], [21], [23], [26], [29], 1301). For the 
special case of the exponential distribution Bryant and Schmee [4] and 
Madsen and Fairbanks [lfl discuss numerical algorithms for constructing con- 
fidence intervals for the mean following a sequential probability ratio test [25]. 
Their confidence intervals use the well-known relation between confidence sets 
and test of hypothesis as outlined in Section 9.2 of [29]. The reason for 
adapting this approach rather than utilizing the maximum likelihood estimator 
of 8, which for the problem at hand is based on S, ,  is the presence of a sizable 
bias ([29], Chapter 9). 

For the sequential tests considered in this paper (see equations (l.lH3.1)) 
we employ the approach in [I71 and utilize the approximations derived in our 
paper to construct approximate confidence intervals for 9 and the median 
unbiased estimator of 0. Assume that the sequential test terminates at stage k 
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with a reject H, decision and an observed value of S, = s, 3 b,. Then 
a (1 - 2a) 100% confidence interval for 8, denoted by (0,,, OR"), is obtained 
from the equations 

and 

k - l  

C f l j ( O R ~ ?  b l ) + f l k { & L y  SR) = 
j=  1 

where jj(O, x) is given in (2.5) and 0 < a < 0.5 is a specified quantity. Now, 
suppose that the test terminates at stage k with accept H ,  decision and an 
observed vaIue of Sk = s, < a,. In this case, a (1 -201) 100% confidence interval 
for 0, denoted by (OAL, dAU), results from the solution of the equations 

where olj(8, x) is given in (2.10). The numerical algorithms used in evaluating 
the confidence intervals ( O m ,  OR") and (OAL, OAU) are described in Section 3. 

Along with the confidence intervals for 0 it is often useful to present the 
approximate median unbiased estimate of 8. This estimate is obtained by 
solving equations (2.12) and (2.14) for ol = 0.5. The approximate median 
unbiased estimators obtained from (2.12) and (2.14) are denoted by 8, and 
OA,, respectively. 

In Section 4 we evaluate the approximate. median unbiased estimates and 
confidence intervals for 0 for selected values of a, k ,  s, and s,. These 
approximations are based on the accurate approximations - for P{T > n) 
(equations (2.1)-(2.3)) developed in this paper. 

3. NUMERICAL ALGORITHMS 
FOR EVALUATING THE APPROXIMATIONS 

In this section we present a brief outline for the numerical procedures used 
to evaluate the approximations discussed in Section 2. To evaluate y,,,, the 
lower bound for P(T > n), for 1 < m < 7 we have to evaluate the multivariate 
normal probabilities 

j 

q i , j = ~ ( n ( S t ~ l J )  for i = j - 6 ,  ..., j-1, 
t = i  
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where I, = (q, b,) (equations (2.1)-(2.3)). For j 2 i + l  we condition on SF, 
where t* is the integer part of (i+j- 1)/2, and integrate over its density. By 
utilizing the conditional independence of the events a simplified expression for 
qi,, that is suitable for numerical integration is obtained. For example, to 
evaluate y7,n the most eIaborate term in equation (2.2) is 

6 

rti-6,j= P ( n  (Sj-k~lj-k)). 
k = O  

Using the approach described above we get: 

(3.l) q j - 6 , j  

1 

1 

j P(Sj-2+2k~Ij-Z+2k 1 Sj-l = U, Sj-3 = ~)f~~-~~S~- ,=s(u)duds .  
Xj- 1 k = O  

To evaluate the multiple integrals in equation (3.1) we have selected the 
Gaussian quadrature method. This method performs as well as other numerical 
integration methods and has the advantage of being based on a fixed number 
of points 1221. 

For the problem at hand we employ the Gauss-Legendre quadrature ([6], 
pp. 887 and 916-919): 

where a > 0, f(x) is an integrable function, {Bit?=, is a sequence of weights for 
the Gauss-Legendre quadrature, and {si)y= is a sequence of abscissas (zeros of 
the N-th degree Legendre polynomial) for Gauss-Legendre quadrature ([6], 
pp. 916-919). The approximation on the right-hand side of equation (3.2) is 
based on 2N points. We now present the general form of the approximation for 
Q - ~ , ~  given in equation (3.1) that is based on the Gauss-Legendre quadrature. 
In what follows we assume without loss of generality that I, = (-cry cJ, where 
ct > 0 and t = 1, . . . , n. It follows from (3.1) that 

where a,(si), gy)(s,, tj, -tj), g$l)(-si, ti, -tj), gfl(si, uh, -u,J and gfl(-si, 
u,, -uh) are algebraic expressions involving the cumulative distributions and 
the density functions as functions of +q, f ti and +ui, the abscissas used in 
the Gauss-Legendre quadrature. Explicit .formulae for qj-k,j, k = 1, . . . , 6, are 
given in [lo]. 
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To evaluate the lower bound for E(z) and the approximation for Vartz) 
we substitute .)I,,, for P (T > n) in (1.6) and (1.71, respectively. Since the 
expressions for E (t) and Var(z) contain infinite series of tail probabilities, we 
truncate these series at the point where their values do not change by more 
than 

To approximate the power function, the P-values, the overall significance 
level, the median unbiased estimate of 0, and the confidence interval for 0 we 
effectively approximate the terms P, (0, x) given in (2.5) by y:,, defined in (2.6). 
For 1 < m < 7 the evaluation of yz,, involves the terms Y,,~- and y,- j , ,  - that 
were discussed above and the terms 

Since the evaluation of v,*_~,  differs from v , - ~ , ,  only by the form of the last 
event, a similar numerical algorithm using the Gauss-Legendre quadrature is 
used. Explicit formulae for r,~,*-~,,,, I < j 6 6, are given in [10]. 

The power function #I (0) and the overall significance level a, given in (2.4) 
and (2.1 I), respectively, are represented as infinite series of &(%, b,,). We truncate 
these series at the point where their values do not change by more than loB6. 

4. EXAMPLES 

In this section we apply the approximations derived in Sections 2 and 3 to 
two well-established sequential tests. 

EXAMPLE 1 (sequential probability ratio test). The continuation region for 
this test is given by the intervals 

where a and 0, are the design parameters. For more details on the sequential 
probability ratio test see [29], Chapter 3. To apply the approximations 
discussed in Sections 2 and 3 it is convenient to transform the continuation 
region so that it will be symmetric about the n axis in the (n, S,)-plane. This is 
accomplished by the transformation = Xi - B/2 and defining 

where SX = and I,* = (-a/Bl, a/6,). The null hypothesis is trans- 
lated to H,: 8 < -8" and the error rates requirements in this case are 
P ( -  B*) = 1 - P (O*) = a, where B* = 8,/2. To satisfy the above error require- 
ments one uses the value a = ln(y/a)--0.583, where y is the Laplace transform 
of the asymptotic distribution of the excess of the random walk 6,s: over 
the boundary evaluated at the value one (see 1291, Section 3.1, and [21], 
Chapter X). 
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We now give the numerical results for this example. In Table I we present 
the approximations for the tail probabilities of the stopping time, in Table I1 
the expected stopping time and the standard deviation of the stopping time, in 
Table 111 the power function of the test, in Table IV the P-values, and in Table V 
the approximate conf~dence intervals and the median unbiased estimators of 8. 

TABLE I. Lower bounds and simulated values of P(7 > n) for a = fl = 0.05 and O* = 0.50 
- - -  

The starred values are exact. 

TABLE 11 

.. - 
n Y3 Y7 Simulation 

1 0.9706* 0.9706* 0.9667 
2 0.8273* 0.8273* 0.8276 
3 0.6592* 0.6592* 0.6633 
4 0.5130 0.5133* 0.5112 
5 0.3951 0.3967* 0.4000 

6 0.3026 0.3057* 0.3153 
7 0.2309 0.2354* 0.2386 
8 0.1757 0.1812 0.1865 
9 0.1335 0.1395 0.1405 

10 0.1013 0.1073 0.1098 

n 73  7 7  Simulation 

11 0.0767 0.0826 0.0856 
12 0.0581 0.0636 0.0649 
13 0.0440 0.0489 0.0505 
14 0.0332 0.0376 0.0390 
15 0.0251 0.0290 0.0305 

16 0.0190 0.0223 0.0239 
17 0.0143 0.0172 0.0185 
18 0.0108 0.0132 0.0145 
19 0.0082 0.0102 0.0083 
20 0.0062 0.0078 0.0064 

Upper and middle values are the lower bounds based on y, and y,, respectively. Lower value 
is simulated. 

m\e 

0.010 

0.050 

0.010 

0.050 

8* = 0.25 
- 0.25 -0.125 0 

0' = 0.50 
- 0.50 - 0.25 0 

Lower bounds and simulated values of E(.r) 
31.39 46.22 59.46 
34.55 53.87 72.04 
36.16 61.31 84.90 

19.51 25.77 29.53 
21.38 29.34 34.25 
22.32 30.58 36.20 

9.05 14.13 19.04 
9.28 15.21 21.16 
9.23 15.25 21.54 

5.62 7.70 . 8.99 
5.69 7.87 9.24 
5.72 7.99 9.25 

Approximated and simulated values of standard deviation of 7 
16.13 26.93 37.31 
19.82 35.51 51.17 
23.02 46.09 68.66 

11.95 17.13 20.35 
14.53 21.77 26.35 
15.86 24.08 29.61 

5.31 9.47 13.86 
5.68 11.10 16.78 
5.70 11.35 17.69 

3.77 5.70 6.94 
3.92 6.02 7.37 
3.97 6.20 7.43 
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TABLE 111. Approximated and simulated values of #I(@ 

Upper and middle values are the lower bounds based on y, and y,, respectively. Lower value 
is simulated; starred values are exact. 

TABLE rV. P-values for u = /I = 0.05 and O* = 0.25 

N 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
18 
19 
20 
21 
22 
23 

24 
25 
26 
27 
28 
29 
30 

Upper boundary Lower boundary 

Number of standard deviations 
0.1 0.5 

0.0000 0.0000 
0.0000 0.0000 
0.0002 0.0001 
0.0007 0.0004 
0.0016 0.0012 
0.0030 0.0024 
0.0047 0.0039 

0.0066 0.0057 
0.0086 0.0077 
0.0106 0.0097 
0.0127 0.01 18 
0.0147 0.0138 
0.0166 0.0158 
0.0185 0.0177 
0.0203 0.0195 

0.0220 0.0213 
0.0236 0.0229 
0.0252 0.0245 
0.0266 0.0260 
0.0280 0.0274 
0.0293 0.0287 
0.0305 0.0300 
0.0316 0.0311 

0.0327 0.0322 
0.0337 0.0333 
0.0346 0.0342 
0.0355 0.0351 
0.0363 0.0360 
0.0371 0.0368 
0.0378 0.0375 

of ST over the boundary 
0.1 0.5 

1.0000 1.0000 
0.9998 0.9999 
0.9969 0.9984 
0.9869 0.4914 
0.9844 0.9849 
0.9402 0.9512 
0.9065 0.9 196 

0.8687 0.8831 
0.8286 0.8438 
0.7876 0.8030 
0.7468 0.7621 
0.7067 0.7216 
0.6677 0.6822 
0.6302 . 0.6441 
0.5943 0.6076 

0.5600 0.5727 
0.5275 0.5395 
0.4967 0.508 2 
0.4677 0.4784 
0.4402 0.4503 
0.4144 0.4239 
0.3901 0.3991 
0.3674 0.3758 

0.3460 0.3539 
0.3259 0.3333 
0.3072 0.3141 
0.2896 0.2961 
0.2732 0.2792 
0.2578 0.2634 
0.2434 0.2487 
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TABLE V. 95% confidence intervals (CI) for 8; = B = 0.05 and f?+ = 0.25 
- 

EXAMPLE 2 (asymptotically optimal Bayes sequential test). The continuation 
region for this test is bounded and symmetric: 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 
15 

where c, = (2an)'", a > 0, and O* > 0. Moreover, P(z  < M) = 1, where 
M = 2a/6*' if this quantity is an integer or the integer part of it plus one, 

TABLE VI. Lower bounds and simulated values of P ( z  > n) for a = /? = 0.05 and O* = 0.50 

Number or standard deviations ST is over the upper boundary 
0.1 

Lower CI Median Upper CI 

3.5498 5.5097 7.4697 
1.3689 2.7549 4.1408 
0.7011 1.8342 2.9665 
0.5848 1.4689 1.7669 
0.2701 1.2562 1.6811 

- -- 0.1129 1.027 1 1.6272 
0.0989 1.0078 1.6144 

-0.0394 0.7218 1.5784 
-0.0824 0.6321 1.5747 
-0.1355 0.5624 1.5735 
-0.1416 0.5064 1.5732 
-0.1625 0.4604 1.5731 
- 0.1796 0.42 1 8 1.5730 
-0.1936 0.3889 1.5730 
-0.2053 0.3607 1.5730 

The starred values are exact. 

0.5 
Lower CI Median Upper CI 

3.9498 5.9097 7.8697 
1.5689 2.9548 4.3407 
0.8287 1.9644 3.0P7-l 
0.5848 1.4689 1.7669 
0.3574 1.3169 1.6990 
0.1619 1.0893 1.6373 
0.0989 1.0078 1.6144 

0.0106 0.8063 1.5860 
- 0.0227 0.7411 1.5833 
- 0.0504 0.6892 1.5825 
- 0.0733 0.6468 1.5822 
- 0.0925 0.61 13 1.5822 
-0.1086 0.5812 1.5822 
- 0.1224 0.5553 1.5821 
-0.1341 0.5328 1.5821 

n Y3 y, Simulation 

1 0.9148* 0.9148* 0.9184 
2 0.8034* 0.8034* 0.8065 
3 0.6875* 0.6875* 0.6921 
4 0.5750 0.5765* 0.5778 
5 0.4709 0.4749* 0.4738 

6 0.3703 0.3850* 0.3871 
7 0.2985 0.3075* 0.3108 
8 0.2316 0.2419 0.2440 
9 0.1767 0.1875 0.1884 

10 0.1326 0.1431 0.1439 

21 - PAMS 15 

n . Y3 y, _ Simulation 

11 0.0978 0.1074 0.1067 
12 0.0709 0.0792 0.0771 
13 0.0503 0.0572 0.0551 
14 0.0349 0.0402 0.0377 
15 0.0235 0.0275 0.0266 

16 0.0153 0.0181 0.0183 
17 0.0095 0.0113 0.0109 
18 0.0055 0.0066 0.0069 
19 0.0029 0.0035 0.0034 
20 0.0013 0.0016 0.0014 
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otherwise. The constants a and O* are the design parameters for testing 

H,: 0 < - 8* VS. Ha: 8 > - O*, 

and are selected in such a way that the error rates requirements in this case 
are @ (- 0*) = 1 -8 (O*) = a. A thorough discussion about this test can be 
found in [2], [19], and [28]. Numerical results for this example are presented 
in Tables VI-X. 

. . TABLE VII 
. . 

Upper and middle values are the lower bounds based on y,  and y,, respectively. Lower value 
is simulated. 

0.010 

Qll5Q 

0.010 

0.050 

TABLE VIII. Approximated and simulated values of p(0) 

Upper and middle values are the lower bounds based on y,  and y,, respectiveIy. Lower value 
is simulated; starred values are exact. 

B* = 0.25 
- 0.25 -0.125 0 

8* = 0.50 
-0.50 -0.25 0 

Lower bounds and simulated values of E(T) 
33.86 51.48 65.65 
37.75 58.29 73.77 
40.02 62.54 79.90 

29.1 3 33.91 5.98 
23.57 32.87 38.17 
24.30 34.62 40.36 

9.61 14.48 17.95 
9.93 15.11 18.66 
9.89 15.10 18.78 

8.02 9.10 
6.08 8.16 9.26 
6.09 8.12 9.33 

Approximated and simulated values of standard deviation of a 

19.02 28.31 33.62 
22.09 32.45 37.08 
24.62 35.68 39.32 

14.39 19.53 2203 
16.66 22.21 24.58 
17.56 23.63 25.79 

5.40 7.73 8.63 
5.74 8.13 8.91 
5.74 8.15 9.00 

3.87 4.95 5.37 
3.98 5.07 5.47 
3.96 5.01 5.50 
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TABLE IX. P-values Tor a = B = 0.05 and 8' = 0.25 

From the numerical results for the two sequential tests given in 
Tables 1-111 and Tables VI-VIII, respectively, it is evident that the new 
approximations derived in this paper improve significantly on the ap- 
proximations given in [9j. These improved approximations lead to accurate 
P-values and confidence intervals for the mean presented in Tables IV-V 
and IX-X. Note that the confidence intervals and the median unbiased 
estimators for the mean presented in Tables V and X were given only 

N 

1 
2 
3 
4 
5 
6 
7 

8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 
20 
21 
22 

23 
24 
25 
26 
2'1 
28 
29 
30 

Upper boundary Lower boundary 

Number of standard deviations 
0.1 0.5 

0.0031 0.0009 
0.0068 0.0051 
0.0095 0.0083 
0.0117--- 0.0107 
0.0136 0.0127 
0.0152 0.0145 
0.0166 0.0160 

0.01 79 0.0173 
0.0190 0.0185 
0.0201 0.0 196 
0.02 1 1 0.0206 
0.0220 0.0216 
0.0228 0.0224 
0.0236 0.0233 

0.0244 0.0241 
0.0251 0.0248 
0.0258 0.0255 
0.0264 0.0262 
0.0271 0.0268 
0.0276 0.0274 
0.0282 0.0280 
0.0288 0.0285 

0.0293 0.0290 
0.0298 0.0296 
0.0302 0.0300 
0.0307 0.0305 
0.0312 0.0310 
0.0316 0.0314 
0.0320 0.03 18 
0.0324 0.0322 

of ST over the boundary 
0.1 0.5 

0.9873 0.9958 
0.9670 0.9764 
0.9451 0.9547 
0.9223 0.9321 
0.9 173 0.9182 
0.8748 O.RS47 
0.8504 0.8603 

0.8256 0.8356 
0.8005 0.8 105 
0.7752 0.7852 
0.7497 0.7597 
0.7242 0.7342 
0.6987 0.7086 
0.6733 0.6831 

0.6481 0.6578 
0.6231 0.6327 
0.5985 0.6079 
0.5742 0.5834 
0.5503 0.5594 
0.2570 0.5358 
0.5041 0.5127 
0.4819 0.4902 

0.4602 0.4683 
0.4391 0.4470 
0.4187 0.4263 
0.3989 0.4063 
0.3799 0.3869 
0.3615 0.3683 
0.3437 0.3503 
0.3267 0.3330 
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TABLE X. 95% confidence intervals (CI) for 0;  or = B = 0.05 and O* = 0.25 

in the case when the process crosses the upper boundary. In the case 
when the lower boundary is crossed, for the examples presented in this 
paper, one multiples by the minus sign the values given in Tables V and X. 

N 

1 
2 
3 
4 
5 

- 6 
7 

8 
9 

10 
11 
12 
13 
14 
15 
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